Recent retrotransposon insertions are methylated and phylogenetically clustered in japonica rice (Oryza sativa spp. japonica).

نویسندگان

  • Bridgett M Vonholdt
  • Shohei Takuno
  • Brandon S Gaut
چکیده

In plants, the genome of the host responds to the amplification of transposable elements (TEs) with DNA methylation. However, neither the factors involved in TE methylation nor the dynamics of the host-TE interaction are well resolved. Here, we identify 5,522 long terminal repeat retrotransposons (LTR-RT) in the genome of Oryza sativa ssp. japonica and then assess methylation for individual elements. Our analyses uncover three strong trends: long LTR-RTs are more highly methylated, the insertion times of LTR-RTs are negatively correlated with methylation, and young LTR-RTs tend to be closer to genes than older insertions. Additionally, a phylogenetic examination of the gypsy-like LTR-RT superfamily revealed that methylation is phylogenetically correlated. Given these observations, we present a model suggesting that the phylogenetic correlation among related LTR-RTs is a primary mechanism driving methylation. In this model, bursts of transposition produce new elements with high sequence similarity. The host machinery identifies proliferating elements as well as closely related LTR-RTs through cross-homology. In addition, our data are consistent with previous hypotheses that methylated LTR-RT elements are removed preferentially from regions near genes, explaining some of the observed age distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GENETIC TRANSFORMATION AND HYBRIDIZATION Unintended consequence of plant transformation: biolistic transformation caused transpositional activation of an endogenous retrotransposon Tos17 in rice ssp. japonica cv. Matsumae

Genetic instability could be provoked as an unintended consequence of genetic engineering in plants. Here, we report that the rice endogenous long terminal repeat (LTR) retrotransposon Tos17 was transpositionally activated only in transgenic calli and their regenerated plants produced by biolistic transformation in rice (Oryza sativa L.) ssp. japonica cv. Matsumae. Moreover, the transpositional...

متن کامل

Genomic changes at the early stage of somatic hybridization.

A broad spectrum of genetic and epigenetic changes is induced by wide hybridization and subsequent polyploidization, but the timing of these events remains obscure because early hybrid cells are very difficult to harvest and analyze. Here, we used both cytological and genetic marker approaches to analyze the constitution of very young somatic hybrid cells between japonica rice (Oryza sativa L. ...

متن کامل

Genome-wide analysis of transposon insertion polymorphisms reveals intraspecific variation in cultivated rice.

Insertions and precise eliminations of transposable elements generated numerous transposon insertion polymorphisms (TIPs) in rice (Oryza sativa). We observed that TIPs represent more than 50% of large insertions and deletions (>100 bp) in the rice genome. Using a comparative genomic approach, we identified 2,041 TIPs between the genomes of two cultivars, japonica Nipponbare and indica 93-11. We...

متن کامل

Nonindependent domestication of the two rice subspecies, Oryza sativa ssp. indica and ssp. japonica, demonstrated by multilocus microsatellites.

The origins of the Asian cultivated rice Oryza sativa from its wild ancestor O. rufipogon have been debated for decades. The question mainly concerns whether it originated monophyletically or polyphyletically. To shed light on the origins and demographic history of rice domestication, we genotyped a total of 92 individual plants from the two O. sativa subspecies and O. rufipogon for 60 microsat...

متن کامل

Characterisation of Indica Special Protein (ISP), a Marker Protein for the Differentiation of Oryza sativa Subspecies indica and japonica

Based on both morphological and physiological traits, Asian cultivated rice (Oryza sativa L.) can be classified into two distinct subspecies, indica and japonica. To better understand the differences between the two subspecies, a proteomic approach was used to profile proteins present in the yellow seedling stage of 10 indica and 10 japonica rice varieties. We report the discovery of a new prot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 29 10  شماره 

صفحات  -

تاریخ انتشار 2012